导航菜单

高等数学

求导公式与法则求导基础公式

\[(x^{a})^{'}= ax^{a-1}\\(\sqrt{x})^{'}=\frac{1}{2\sqrt{x}}\\(\frac{1}{x})'=-\frac{1}{x^2}\\(a^x)'=a^x\ln{a}\\(\log_a{x})'=\frac{1}{x\ln{a}}\\(\sin{x})'=\cos{x}\\(\cos{x})'=-\sin{x}\\(\tan{x})'=\sec^2{x}\\(\cot{x})'=-\csc^2{x}\\(\sec{x})'=\sec{x}\tan{x}\\(\csc{x})'=-\csc{x}\cot{x}\\(\arcsin{x})'=\frac{1}{\sqrt{1-x^2}}\\(\arccos{x})'=-\frac{1}{\sqrt{1-x^2}}\\(\arctan{x})'=\frac{1}{1+x^2}\\(arccot{x})'=-\frac{1}{1+x^2}\]

求导运算法则

设$ u(x)、v(x)$可导,则

四则求导法则四则求微分法则$$ (u\pm v)'=u'\pm v'$$$$d(u\pm v) = du\pm dv$$$$ (1)(uv)'=u'v+v'u\ (2)(ku)'=ku'(k为常数)\ (3)(uvw)'=u'vw+uv'w+uvw'$$$$(1)d(uv)=udv+vdu\ (2)d(ku)=kdu(k为常数)\ (3)d(uvw)=vwdu+uwdv+uvdw$$$$(\frac{u}{v})'=\frac{u'v-uv'}{v^2}$$$$d(\frac{u}{v})=\frac{vdu-udv}{v^2}$$

复合函数求导法则-链式法则

设\(y=f(u)\)可导,\(u=\phi(x)\)可导,且\(\phi^{'}(x)\neq0\),则\(y=f[\phi(x)]\)可导,且

\[\frac{dy}{dx}=\frac{dy}{du}.\frac{du}{dx} = f^{'}(u).\phi^{'}(x)= f^{'}[\phi(x)].\phi^{'}(x)\]

反函数求导法则

\[(1)设y=f(x)可导且f^{'}(x)\neq0,又x=\phi(y)为其反函数,则x=\phi(y)可导,且\\\phi^{'}(y)=\frac{1}{f^{'}(x)}\\设y=f(x)二阶可导且f^{'}(x)\neq0,又x=\phi(y)为其反函数,则x=\phi(y)二阶可导,且\\\phi^{''}(y)=-\frac{f^{''}(x)}{f^{'3}(x)}\]

相关推荐: